Sheffield work towards a treatment for SOD1 form of MND

A number of articles were published in various news sources on 11 July 2014, highlighting how scientists in Sheffield are working towards testing a promising treatment for a rare inherited form of MND caused by the SOD1 gene. Here we write about the research and what it means for people living with MND.

The Sheffield Institute for Translational Neuroscience (SITraN) specialises in research into MND and other neurodegenerative diseases. Recently the institute received an anonymous donation of £2.2 million to help translate their research from the lab to the clinic. This is a huge amount of money into MND research and this donation will enable the researchers to further our understanding of the disease.

Laboratory PhotoThe research

We know that approximately 10% of cases of MND are inherited. This means that they are characterised by a strong family history and the disease is caused directly by a mistake in a specific gene. Of these 10% of cases, 2% are caused by the SOD1 gene (meaning that for every 100 cases of MND, 10 cases are inherited and of these, only 2 are directly caused by the faulty SOD1 gene).

Prof Mimoun Azzouz’s research at SITraN was reported in a number of news outlets, highlighting how his research is paving the way to a treatment for a rare form of MND. His research is at a relatively early stage, where he has only just begun investigating the use of a technique known as ‘gene therapy’ in mice affected by the SOD1 inherited form of MND. If the research goes to plan, he will be able to submit a proposal for regulatory approval by August 2015. Read the rest of this entry »

The UK Whole Genome Sequencing project

Dr Samantha Price is the Research Information Co-ordinator at the MND Association. As well as organising the ‘blog a day’ during MND Awareness Month she also communicates the latest news about MND research. Here she blogs about the MND Association’s announcement of the UK Whole Genome Sequencing project.

It’s been a brilliant Awareness Month with blogs about zebrafish research and streaking meerkats. To end on a positive research note, we’re delighted to announce that we are funding a UK Whole Genome Sequencing project to help us understand more about the causes of MND. Utilising samples from our own UK MND DNA bank; researchers in the UK will aim to sequence 1,500 genomes to help identify more of the genetic factors involved in the disease.  Read the rest of this entry »

Decisions, Decisions…

The day finally arrived on 11 April 2014 for our biannual Biomedical Research Advisory Panel (BRAP) Meeting. This important date in our research calendar is when grant funding decisions are discussed before being put forward to our Board of Trustees for approval.

But before we get to the meeting, there is a lot of preparation that is needed. As you are aware from previous blog posts, applications go through various stages of review, including summary review, invites for full applications and external review. Before the meeting itself there is yet another stage of review for the applications, which is known as internal review. This might seem a bit ‘admin-heavy’, but since we are only able to fund a quarter of such a wide variety of proposals, ranging from cell-based studies to clinical research, we need to be confident that we’re funding the ‘best of the best’. With so many new ideas, ‘separating the wheat from the chaff’ can be a difficult and time-consuming process!

Read the rest of this entry »

Matrin 3 gene identified

Following on from our ’year of hope’ appeal last month an international team of researchers, including two funded by the MND Association, have identified mutations in the Matrin 3 (MATR3) gene as a cause of the rare inherited form of MND.

Medical Research Council (MRC)/ MND Association Lady Edith Wolfson Clinical Research Fellow Dr Pietro Fratta was involved in the research, which was published on 30 March 2014 in the prestigious journal Nature Neuroscience.

Inherited MND is a rare form of MND (5-10% of total MND cases) and the MATR3 gene is the latest to be identified. This rare form of MND is characterised by a family history of MND.

New gene, new gene

When a new gene is first identified this creates a great deal of ‘buzz’ amongst the MND research community, often generating more questions than answers:

  • How common is this inherited MND gene?
  • How does this gene cause MND?

This is the starting point for MATR3. Unfortunately, we just don’t know the answers to these questions at the moment. Hopefully MND researchers will now use the discovery of MATR3 to find the answers to these questions and further our understanding of this gene.

Read the rest of this entry »

Celebrating posters

If you followed the reporting about the symposium last weekend, I’m willing to bet (but I haven’t checked!) that most it will have been about the talks that people attended or liked. When actually, a large proportion of the research presented at the International Symposium on ALS/MND is in the form of a poster.

Milan poster session discussion

Delegates discuss a poster presentation

A poster is a hard copy of a research study, it can be the latest results or developing a new methodology. It’s quite often a PhD student’s introduction into presenting their work face to face to their peers.

Following the day’s talks, on the first and second evening of the symposium, it was time for an opportunity for some informal networking around the posters. At allocated time slots presenters stand by their work and explain it to fellow delegates. (They also have time to visit other posters too).

For twenty of those presenting posters, there was an additional pressure. They were on the shortlist for the International Symposium Clinical and Scientific Poster Prizes respectively.

Read the rest of this entry »

The cell that never grew up

With Pantomime season kicking off back home in the UK, delegates in Milan were introduced to one of the newest cellular villains in the MND story – oligodendrocytes.

Although oligodendrocytes were first identified in the 1920s and are known to be affected in multiple sclerosis, they were generally considered as ‘bit part’ players in MND rather than ‘centre stage’.

All that has started to change in the past couple of years, with researchers in the USA and Belgium independently showing that, in both SOD1 mice and human post mortem MND brain tissue, the brain was making new oligodendrocytes to replace ones that appeared to be dying off.  The problem is that the new ones being formed appear to get stuck in an immature state and therefore do not perform their role of helping motor neurons to maintain appropriate energy levels and also send electrical signals down their long nerve fibres.

So, by getting stuck in a ‘Peter Pan’ scenario of never growing up, oligodendrocytes may be at best, unable to help protect the death of motor neurons or, at worst, they may actually contribute to the degeneration. Peter Pan rather than Captain Hook as the pantomime villain is a novel twist to the script!

Read the rest of this entry »

Tilting the scales

We know that in the 5-10% of cases where there is a strong family history of MND, there is likely to be a genetic cause at work, acting like a weight to push the scales in favour of the disease occurring.  These gene mutations are hidden somewhere within the 15 billion or so letters of DNA that make up our genome and, through collecting samples from extended families affected by the disease, coupled with huge advances in gene-hunting technology, researchers have managed to identify over two-thirds of the causes of hereditary MND in recent years and are hot on the heels of the other causes.

scales

Read the rest of this entry »

Clinical trials in a dish?

A packed room at the 24th International Symposium on ALS/MND was given a fascinating whistle stop tour covering stem cells, robots and cellular garbage clearing, by Dr Steve Finkbeiner of the University of California, as well as a glimpse into the future of developing ‘disease in a dish’ models of MND.

Dr Finkbeiner outlined how his lab is attempting to conduct “clinical trials in a dish” by generating huge numbers of cultured neurons cells for automated ‘high throughput analysis’ of their health and death. As he says, “we’re basically trying to develop a comprehensive physical examination for nerve cells”. Read the rest of this entry »

Researchers in Australia identify how blue-green algae may cause some cases of MND

A toxin known as β-N-methylamino-l-alanine (BMAA), which is found in blue-green algae, has been shown to cause proteins inside cells to clump together and cause cell death.

This finding suggests that BMAA may be a cause of neurodegenerative diseases like Alzheimer’s and MND and could lead to the development of new treatments.

What is BMAA?

BMAA is a non-protein amino acid. This means, that unlike the 20 amino acids that our bodies use to make proteins, it does not make a human protein.

BMAA is found in a type of bacteria called Cyanobacteria (more commonly known as blue-green algae), which are usually found in waterways as well as damp soil and on the roots of cycad plants.

Blue-green algae can occasionally cause algal blooms. This is when there is a rapid growth of organisms due to high levels of nutrients in the water. The resulting bloom can sometimes become so large that it can be toxic to wildlife.

Read the rest of this entry »

New MND Association Lectureship in Translational Neuroscience

Dr Richard Mead based at the Sheffield Institute for Translational Neuroscience (SITraN) at the University of Sheffield has been awarded the Kenneth Snowman-MND Association Lectureship in Translational Neuroscience.

Dr Richard Mead, SITraN, UK

Dr Richard Mead, SITraN, UK

The five-year Kenneth Snowman-MND Association lectureship is aimed to embed preclinical expertise in motor neurone disease (MND) models within SITraN as a national resource.

Our Director of Research Development at the Association, Dr Brian Dickie, commented: “We are delighted to be able to help secure the position of an outstanding young scientist at one of the top European centres for MND research.

“Our understanding of the causes of MND and the reasons why motor neurons degenerate is increasing rapidly and we need more researchers like Dr Mead who are ideally placed to move this new understanding from the laboratory to the clinic.”

Read more about this story on our website: New MND Association Lectureship in Translational Neuroscience.

Follow

Get every new post delivered to your Inbox.

Join 2,111 other followers