ANXA11 – another gene closer to understanding ALS

A new research paper has been published today in the Science Translational Medicine journal, describing a new gene implicated in developing MND. What is this gene and why is it important for our fight against MND?

Although they are not the sole cause of MND, genes play a big role in someone’s probability of developing the disease. A number of such genes that make a person susceptible to developing MND have already been identified, with most of them causing the rarer, inherited form of the disease.

A new addition to a list of genes that are related to development of ALS, the most common form of MND, has been discovered by researchers from King’s College London. Dr Bradley Smith and colleagues screened genetic data of an unusually high number of people of European origin: 751 with inherited – familial – ALS (fALS) and 180 with non-inherited – sporadic – ALS (sALS). Detailed analysis of this data found that specific mutations in the ANXA11 gene are associated with around 1% of all fALS and 1.7% of all sALS cases. Continue reading

What goes wrong with electrical signalling in MND?

Last year, we introduced a PhD Studentship that we are funding at the University of St Andrews. Under the supervision of Dr Gareth Miles and Prof Siddharthan Chandran, the student working on this project, Amit Chouhan, is investigating why electrical signalling goes wrong in MND.

As the project enters its second year, Amit and the team have made some important discoveries… Continue reading

Epi Epi Epi, Oi Oi Oi

Mention the word Epidemiology and instantly my mind conjures up the Centre for Disease Control (CDC) in America being swarmed by zombies or men in bright orange astronaut-type suits in The Crazies.  While it’s true that it includes studying highly infectious diseases and how they spread (zombies and end of world scenarios aside!), it can be applied to any disease.

Having spent much of my time in the last year working on the data that was collected from our recent epidemiology study, I was keen to shout about the fact that the data is now ready for researchers to use. The analysis of this data will add great value to samples that we already have in our DNA Bank.

What is Epidemiology?

Continue reading

Exploring the interaction between TDP-43 and RNA

In light of the upcoming Biomedical Research Advisory Panel meeting happening on Friday 7 April that will discuss which new research projects the MND Association will fund, we are pleased to report on the progress of one of our already-funded researchers. In their three year project, funded by the MND Association, Prof Annalisa Pastore (King’s College London) and Prof Gian Tartaglia (University Pompeu Fabra, Barcelona) are investigating the process by which TDP-43 binds to RNA. Below is a summary of the progress they made during their first year.

Background to the project

Alumni Board Meeting 2008

Annalisa Pastore, King’s College London

One of the causes of amyotrophic lateral sclerosis (ALS), the most common type of motor neurone disease (MND), is related to faulty functioning of the TDP-43 protein, a component that is naturally present in all of our cells. In healthy cells, TDP-43 resides in the centre of a cell (the nucleus) where it attaches to RNA and supports correct gene expression – that is, it helps to extract information carried by a gene to form proteins, the main building blocks of our bodies.

Continue reading

Funding for Gut-sy MND research announced

Yesterday the Reta Lila Weston Trust announced that they will be funding Dr Nikhil Sharma and colleagues at the Leonard Wolfson Experimental Neurology Centre (LWENC) to investigate whether the bacteria that live in our guts could alter the progression of MND. The grant is for £1.2 million over a period of four years. The LWENC is run jointly by the National Hospital for Neurology and Neurosurgery (NHNN) and University College London (UCL).

Incredibly, researchers have found a link between the bacteria that live in our guts and important cells called microglia. We know that microglia help regulate the function of the motor neurones. This study aims to find out whether the balance of gut bacteria in MND could be linked to changes in microglia. Continue reading

Focus on the research presented in posters in Dublin

Over 100 talks were given at this month’s International Symposium on ALS/MND in Dublin. There were also over 450 posters of research being presented too. Time in the conference programme was allocated on Wednesday and Thursday evening (day 1 and day 2 of the 3 day conference) to visit the posters – you might think that scheduled at the end of the day they would be less well attended – but not a bit of it! It was an extremely loud and buzzy part of the conference.

Below is a brief round-up of some of the posters that caught my eye. Continue reading

Prize winning posters in Dublin

As well as all the networking, debate and new information being shared, the International Symposium on ALS/MND is also a time to celebrate achievements by the giving of awards. The Biomedical and Clinical poster prizes are an opportunity to recognise and celebrate the excellent research and clinical practice being conducted by those early in their career.

Now in its fourth year we hope that the poster prizes will help give the winners career a boost, and give them the encouragement and motivation to continue in MND/ALS research.poster-prize-winners-low-res This year the Panel selected an international group of winners: Dr Albert Lee from Australia and Elsa Tremblay from Canada were jointly awarded the Biomedical poster prize and Ruben van Eijk from The Netherlands won the Clinical poster prize. Each winner received a certificate and a glass engraved paperweight.

The prize winning research ranged from understanding the consequences of a newly discovered gene mutation linked to MND, to why the junction between nerves and muscles is one of the earliest signs of motor neurone damage, to a new statistical analysis to make clinical trials quicker and more efficient. Below I’ve explained more about the research that the winners presented. Continue reading

What causes MND – an update from Dublin

What causes MND is the question that so many of us want to know. For the majority of people with MND we know that it is caused by a combination of many environmental, genetic and lifestyle factors, that gradually tip the balance towards someone developing MND. In the very first talk of the 2016 International Symposium on ALS/MND Joel Vermeulen from The Institute of Risk Assessment Sciences at Utrecht University in The Netherlands gave us an update on research underway to understand the environmental and lifestyle contributions to why people develop MND. Continue reading

Could a Diabetes drug be useful in treating MND?

Today we announce a new collaboration for a preclinical research study on the diabetes drug liraglutide, in the hope that positive results will lead to a clinical trial in MND. Here’s a little more about the rationale behind the study.

The idea that drugs licensed for one disease may have some use in another completely different disease is not new, but it has gained much more attention in recent years. Researchers are developing a new understanding of disease processes, leading to new ‘drug repurposing’ opportunities, with the additional potential to reduce the time and cost of drug development.

Significant advances in genetics and molecular biology in recent years have greatly increased our understanding of the pivotal, carefully balanced cellular processes that usually keep motor neurons healthy but, when disrupted, can cause a cascade of degeneration leading ultimately to their death. Continue reading

New genetic discoveries tell us more about what causes MND – Part 2

Two sets of MND genetic results were published yesterday. One of these results was about the importance of a new gene called NEK1. The second highlighted the role of gene C21orf2 in MND – we wrote an article about this yesterday. Both sets of results were published in the prestigious journal Nature Genetics.

What are the results and what do they tell us?

Researchers found that variations in the NEK1 gene contribute to why people develop the rare, inherited form of MND. Variations in the NEK1 gene were also found to be one of the many factors that tip the balance towards why people with no family history develop MND.

NEK1 has many jobs within motor neurones including helping keeping their shape and keeping the transport system open. Future research will tell us how we can use this new finding to target drugs to stop MND. Continue reading