Using iPSCs to understand why motor neurones lose their normal function in MND

Researchers can create human motor neurones exhibiting signs of MND in the lab by taking skin cells from a person living with MND and reprogramming them into motor neurones. This is called induced pluripotent stem cell (iPSC) technology and gives an ‘in a dish’ human model of MND. iPSCs are being used by several of the researchers we fund.

GBMiles

Dr Gareth Miles

Dr Gareth Miles from the University of St Andrews, together with former PhD student Anna-Claire Devlin, has previously found that these ‘in a dish’ motor neurones lose their ability to produce an electrical nerve impulse. MND-affected motor neurones at first become overactive, and then subsequently lose their ability to produce the impulses needed to make muscles contract.

In his new project Dr Miles and PhD student Amit Chouhan, alongside Prof Siddharthan Chandran (University of Edinburgh), plans to use iPSCs to investigate why these electrical properties in nerve cells change in MND (our reference: 878-792).

The researchers will look at proteins called ‘ion channels’ that regulate the flow of electrical messages (called an action potential) which travel along the nerve cell towards the muscle. Continue reading

Transforming skin cells into nerve cells to understand MND gene mutations

In previous research Prof Kevin Talbot and colleagues at the University of Oxford began to understand more about how the C9orf72 gene defect causes human motor neurones to die. These studies were carried out using an impressive piece of lab technology, called induced pluripotent stem cell (iPSC) technology.

iPSC technology allows skin cells to be reprogrammed into stem cells, which are then directed to develop into motor neurones. Because they originated from people with MND, the newly created motor neurones will also be affected by the disease. Researchers can grow and study these cells in a dish in the laboratory. Continue reading

Defining disease progression in MND from MRI ‘snapshots’

Although conventional brain magnetic resonance imaging (MRI) scans are often normal in people with MND, more sophisticated MRI techniques have shown changes in the structure of their brains as the disease progresses. A limitation of even the most recent MRI techniques is that they can only provide a snapshot of the brain at a single moment in the course of the illness.

Only a description of how these MRI changes evolve over time as the disease advances will tell us how the nerve cell damage due to MND is evolving, area by area, in relation to an individual’s symptoms. This could be obtained by collecting several MRI scans from the same person over time, but the nature of MND makes it challenging to get scans showing the course of disease over several years.

We are funding a three year PhD studentship that aims to use a new imaging method to define the progression of MND (our reference: 859-792). The researcher team, involving Profs Mara Cercignani and Nigel Leigh from the University of Sussex, will use MRI scans that have already been obtained from people with MND and healthy controls. Continue reading

Using a new imaging technique to shed light on changes to nerve cells in MND

Magnetic Resonance Imaging (MRI) technology is advancing rapidly as a tool for diagnosing and monitoring disease. In MND, MRI scans are used to understand changes that happen to the brain because of this disease.

PNL compressed

Prof Nigel Leigh

Prof Nigel Leigh from the Brighton and Sussex Medical School (University of Sussex) is carrying out a study looking into changes to motor neurones using a new imaging method (our reference: 824-791).

Neurite Orientation Dispersion and Density Imaging (NODDI) is a type of MRI scan, and can see whether MND is affecting specific parts of motor neurones, called neurites, found within the brain. Neurites are the tiny parts of the nerve cells that branch out from the main body of the nerve cell, and are important in the functioning of the brain.

Prof Leigh and his team hope that the new imaging approach will tell us more about the sequence of events that cause motor neurones die, and how this relates to the symptoms of people with MND. Continue reading

Using surface EMG to see if fasciculations can be used as a biomarker for MND

What are fasciculations?

When motor neurones in the spinal cord become damaged this makes them electrically unstable, meaning they spontaneously discharge electrical impulses that cause small groups of muscles to contract. These contractions, known as fasciculations, are a common symptom of MND. Research suggests that they might be a good marker of motor neurone health.

Tracking fasciculations with surface EMG

Prof Chris Shaw

Prof Chris Shaw

Led by researchers Prof Chris Shaw and Prof Kerry Mills, Dr James Bashford is using technology called surface EMG to collect data on the site and frequency of fasciculations in different muscles in people with MND. Fasciculations in people with MND are different to benign fasciculations, which can occur in people without the disease and are generally harmless. James and the team hope to show that fasciculations in those with MND have a unique ‘fingerprint’ which can be accurately identified and tracked.

Data collected will be compared to other information currently used to track the progression of MND. James and the team hope surface EMG might provide a more sensitive way of measuring disease progression than previously used methods. This one year feasibility study is being carried out at King’s College London at a cost of £95,000 (our reference: 932-794). Continue reading

Developing ultrasound imaging as a potential non-invasive diagnostic tool for MND

When diagnosing MND, it is important to look at the activity and impact of the motor neurones themselves – is the electrical message being carried down the nerve properly, and is it reaching the end of the nerve in the muscle? Malfunctions in the electrical activity at the muscle end of the nerve cell result in the muscle twitching that many people with MND experience.

One of the tests used to diagnose MND is an electromyography or EMG test. It involves putting needles into a muscle to measure electrical activity. It can be a painful and unpleasant experience, which doctors and patients are only willing to do when necessary.

There is evidence that ultrasound imaging may be able to detect the same malfunctions in the electrical activity of muscle as EMG, by looking at the way the muscle behaves when electrical activity occurs. Ultrasound images produce the typical grey scale images, for example pictures from baby scans, and can be used to provide images of any muscles in the body. Continue reading

Investigating miRNAs as a biomarker for MND

There is a critical need to find a biomarker for MND to speed up diagnosis, monitor disease progression and improve clinical trials. A biomarker is a biological change that can be detected in a person to signal that they have MND, and that can be measured over time to monitor how the disease is progressing.

Previous research has suggested micro RNAs (miRNAs) present in the blood might be a biomarker for MND. miRNAs are short forms of RNA, the cell’s copy of our genetic material DNA. They are stable in the blood, can be easily measured with a blood test, and evidence suggests that they are linked to MND progression. To put it simply, if the biomarker hunt was a music festival, miRNAs would be a headlining act that a lot of people are excited about! Continue reading

Developing a blood test for MND by linking changes in the brain and spinal cord

Developing a way to rapidly diagnose and track how MND progresses over time is a ‘holy grail’ of MND research. The search for so called ‘biomarkers’ is an area that researchers funded by the MND Association are actively pursuing.

MND Association grantees Dr Andrea Malaspina and Dr Ian Pike (Blizard Institute, Queen Mary University of London) and Prof Linda Greensmith (University College London) are currently working on a project to find these biomarkers (our reference: 871-791). People with MND have been helping the researchers by regularly donating blood and spinal cord fluid samples.

QMUL-Blizad MND group

Queen Mary University of London (QMUL) Blizard Institute MND group

Continue reading

Developing the Biomarkers in Oxford Project

Biomarkers in Oxford (BioMOx) is a research project with the aim of identifying a diagnostic biomarker for MND, which could be used to track the progression of this condition.

What are biomarkers?

The aim is to identify biomarkers, or ‘biological fingerprints’ for MND. This could be through testing blood and spinal fluid (CSF) samples from people with MND, or using MRI scans and other imaging techniques to look at changes in the brain.

By understanding the very earliest changes detected in these samples at the start of MND (the biomarker), it is hoped that they could be used to work towards disease prevention and to develop more targeted therapy for those already affected by MND.

For example, including a biomarker element in future clinical trials will help us learn more about the disease and identify participants most likely to benefit from the drug being tested.

Being able to track the progression of the disease could also help with effective care-planning for people with MND. Continue reading

Using DNA Bank samples to create iPSC models of MND

Induced pluripotent stem cell (iPSC) technology has enabled researchers to create and study living human motor neurones in the lab, derived originally from patient skin cells.

DNABankLogoThis project (our reference 80-970-797) is a collaboration between the labs of Professors Chris Shaw and Jack Price at King’s College in London and Siddharthan Chandran in Edinburgh. It aims to use the already collected white blood cell samples within the UK MND DNA Bank to create a larger number of new iPSC models of MND. Ultimately creating an MND iPSC cell bank, these models will enable researchers to better understand the disease and screen potential new drugs. Continue reading