Lithium revisited: Is there a baby in the bathwater?

At last year’s Airlie House workshop to develop new ALS/MND Clinical Trial Guidelines the focus was, of course, on MND, but there was also important input and learning from outside the field.

One of the most fascinating presentations was from an oncologist who was explaining how detailed genetic analysis of tumours was leading to an understanding of why some experimental cancer drugs appeared to only work in a small subgroup of patients. The take home message from the cancer field was that there should be more effort made in future MND trials to identify and analyse smaller subgroups of patients, in case a potentially positive effect might be missed.

A new research paper, published in the journal Neurology, raises some intriguing findings from the trials of the drug lithium that were carried out several years ago. Lithium generated a lot of excitement when researchers in Italy reported a positive effect of the drug in the SOD1 mouse model of MND. Almost as an afterthought, their research paper mentioned that they had tested the drug in a small short-term trial in patients and it appeared to have some effect. Continue reading

11th Lady Edith Wolfson Clinical Fellowship awarded

We are delighted to announce that Dr Arpan Mehta has been appointed as our latest Lady Edith Wolfson Fellow, jointly funded by the MND Association and Medical Research Council.  This clinical research training fellowship will help to launch his career as an aspiring academic neurologist, providing comprehensive training in cellular, molecular and bioinformatics technologies in a world-class environment. Continue reading

Closing the door on toxic proteins – new clues in understanding a genetic form of MND

The defects in the C9orf72 gene are known to cause motor neurone disease, but researchers don’t understand why. Defective copies of this gene are passed down in some families affected by the rare, inherited form of MND. This week MND Association grantees Drs Guillaume Hautbergue, Lydia Castelli and colleagues, based at the Sheffield Institute of Translational Neuroscience have published their research study providing some important clues about the toxicity of C9orf72. Their research is published in the prestigious journal Nature Communications. Continue reading

Life of an MND researcher – part 2: PhD edition

Each year, the MND Association dedicates the month of June to raising MND awareness. This year, we focus on the eyes – in most people with MND the only part of their body they can still move and the only way left for them to communicate. Alongside the Association-wide campaign, the Research Development team selected six most-enquired about topics, which we will address through six dedicated blogs.

In our previous article we introduced four MND researchers who gave us an insight what a typical day in the life of a researcher looks like and what carrying out a research study actually involves. In this continuation article, you will get the chance to look into the lives of four PhD students, who give us an overview of their projects and their usual daily duties. Continue reading

Using stem cell technology to understand more about how MND and FTD develop

The MND Association are funding Prof Kevin Talbot, Dr Ruxandra Dafinca (née Mutihac) and colleagues at the University of Oxford, who are investigating the link between the C9orf72 and TDP-43 genes in MND. We wrote about this research earlier in the year. As we’ve recently received their first year progress report we wanted to give you an update on what they’ve achieved. Continue reading

How faulty proteins disrupt waste recycling and disposal inside nerve cells

Researchers from the Sheffield Institute for Translational Neuroscience (SITraN) at the University of Sheffield have uncovered a new function of the C9orf72 protein. A paper on their work has recently been published in the EMBO Journal.

A change or mutation to the C9orf72 gene is linked to about 40% of cases of inherited MND. We also know that changes to this gene also occur in a type of dementia called frontotemporal dementia (FTD). However, the reasons behind this link have so far been unclear.

One of the main research routes towards explaining the link between the C9orf72 gene and MND is to work out the normal function of this gene. By studying the protein the gene produces, researchers can see how alterations to this protein and the processes it is involved with result in nerve cell damage in MND. Continue reading

Transforming skin cells into nerve cells to understand MND gene mutations

In previous research Prof Kevin Talbot and colleagues at the University of Oxford began to understand more about how the C9orf72 gene defect causes human motor neurones to die. These studies were carried out using an impressive piece of lab technology, called induced pluripotent stem cell (iPSC) technology.

iPSC technology allows skin cells to be reprogrammed into stem cells, which are then directed to develop into motor neurones. Because they originated from people with MND, the newly created motor neurones will also be affected by the disease. Researchers can grow and study these cells in a dish in the laboratory. Continue reading

Investigating C9orf72 and TDP-43 proteins in a fruitfly model of MND

Background to C9orf72 toxicity

We know that damage to C9orf72 (both the gene and the protein it makes) is a crucial step in why some people get MND and why some people get frontotemporal dementia. There are three possible reasons why C9orf72 is toxic. 1) the way the gene is damaged alters how it normally works. 2) the formation of clumps of RNA – a by-product of the damage and not normally seen in cells, and 3) the formation of very short, new and unwanted proteins called ‘dipeptide repeats’ or ‘DPRs’, again these are not normally seen..

There’s evidence of all three types of toxicity within the motor neurone, but we don’t know how they work together or if one is more toxic than another. We also know that the protein TDP-43 forms clumps in motor neurones affected by the C9orf72 gene. Continue reading

Can zebrafish help us to learn more about MND?

A team at the Sheffield Institute for Translational Neuroscience are creating a zebrafish model to study the C9orf72 gene mutation in MND, and work out its role in the brain and spinal cord (our reference 864-792).

Zebrafish are a good way of modelling what happens in human MND. We know that many of the genes linked to causing MND in humans are also found in zebrafish. For example, changes to a gene called SOD-1 in humans are linked to about 20% of all cases of inherited MND, and when you genetically change the same gene in zebrafish they develop symptoms similar to MND.

A faulty or changed C9orf72 gene is associated with about 40% of all cases of the inherited form of MND. This change (or mutation) is also found in people with a form of dementia called frontotemporal dementia (FTD). FTD can alter abilities in decision-making and behaviour. Continue reading

Understanding more about how the cell’s batteries are affected in MND

PhD student Emma Smith has recently started the second year of her MND Association-funded research project at the Sheffield Institute for Translational Neuroscience (SiTRAN) in Sheffield (our project reference: 870-792). With her supervisors Dr Kurt De Vos and Dr Andrew Grierson she is investigating the role of mitochondria in C9orf72-related MND.

basic cell illustration - E Coulthard

Mitochondria (the brown and orange kidney bean shaped structures shown above) provide the cell with energy. Illustration by Emma Coulthard

Mitochondria are the cell’s batteries, providing them with energy. Earlier research has linked damage to mitochondria as a contributor to why motor neurones die in MND. Based on preliminary evidence, the team are aiming to find how the C9orf72 protein causes damage to the mitochondria, where it happens and what might be done to prevent it. Continue reading