Epi Epi Epi, Oi Oi Oi

Mention the word Epidemiology and instantly my mind conjures up the Centre for Disease Control (CDC) in America being swarmed by zombies or men in bright orange astronaut-type suits in The Crazies.  While it’s true that it includes studying highly infectious diseases and how they spread (zombies and end of world scenarios aside!), it can be applied to any disease.

Having spent much of my time in the last year working on the data that was collected from our recent epidemiology study, I was keen to shout about the fact that the data is now ready for researchers to use. The analysis of this data will add great value to samples that we already have in our DNA Bank.

What is Epidemiology?

Continue reading

What is the deal with magnetic fields?

A recently published paper exploring the connection between occupational risk factors and MND has sparked lots of interest, especially by the media. The study in question, led by Dr Roel Vermeulen from Utrecht University, The Netherlands, reviewed and studied five occupational exposures that had previously been suggested to be associated with developing MND (specifically, amyotrophic lateral sclerosis; ALS). These factors included exposure to electromagnetic fields, electrical shocks, solvents, metals and pesticides. While a few studies investigating these factors were already conducted in the past, their results are not consistent.

Despite the vast coverage of this topic in tabloids, we wanted to describe the research paper itself – to explain what exactly the researchers did, what they found and what it all means. Continue reading

Pesticides linked to increased risk of developing MND

The results from a study looking at the possible links between exposure to environmental toxins (found in pesticides) and motor neurone disease (MND) was published yesterday (9 May) in the journal JAMA Neurology.

A group of researchers from the University of Michigan, led by Dr Feng-Chiao Su and Dr Eva Feldman, have found that exposure to pesticides is associated with an increased risk of developing MND.

What did the study involve?

156 people with amyotrophic lateral sclerosis (ALS, a type of MND) and 129 healthy ‘control’ participants from Michigan, USA completed questionnaires on their occupation history, gave blood samples, or did both.

The questionnaire asked about their occupations over four windows of time; at any point during their life, in the last 10 years, in the last 10-30 years, and over 30 years ago. From their answers, the researchers worked out the likelihood of each participant’s exposure to pesticides.

The levels of 122 persistent environmental pollutants (including organochlorine pesticides or OCPs) were tested for in blood samples taken from participants.

Persistent environmental pollutants are those with a long half-life, meaning that they break down slowly. This meant that they could be tested for in the blood, even if exposure happened several years ago. However, the blood sample cannot tell us the source of the pollutants, such as if it was through work, at home or even from eating fruit and vegetables that had been sprayed with pesticides. Continue reading

Researchers in Australia identify how blue-green algae may cause some cases of MND

A toxin known as β-N-methylamino-l-alanine (BMAA), which is found in blue-green algae, has been shown to cause proteins inside cells to clump together and cause cell death.

This finding suggests that BMAA may be a cause of neurodegenerative diseases like Alzheimer’s and MND and could lead to the development of new treatments.

What is BMAA?

BMAA is a non-protein amino acid. This means, that unlike the 20 amino acids that our bodies use to make proteins, it does not make a human protein.

BMAA is found in a type of bacteria called Cyanobacteria (more commonly known as blue-green algae), which are usually found in waterways as well as damp soil and on the roots of cycad plants.

Blue-green algae can occasionally cause algal blooms. This is when there is a rapid growth of organisms due to high levels of nutrients in the water. The resulting bloom can sometimes become so large that it can be toxic to wildlife.

Continue reading