Our Visit to a Brain Bank

Brain banks are a vital resource in MND research. The MRC London Neurodegenerative Diseases Brain Bank was established in 1989. It is part of King’s College London and King’s College Hospital, and is part-funded by the Medical Research Council (MRC).

The new brain bank building at King's

The new brain bank building at King’s

After 18 months of planning, the bank has recently relocated into a bright terracotta building, fit with state-of-the-art equipment and plenty of space to teach in.

To celebrate the move, my research team colleague Martina and I attended their open day. We heard some interesting talks then got to meet the team, tour the labs, and even see a brain dissection! Here’s what we found out… Continue reading

New fellowship to investigate muscle fasciculations

During Awareness month in June we reported on the work of Dr James Bashford at King’s College London, exploring new ways of measuring muscle fasciculations in people with MND. The results from the one year pilot study have shown a lot of promise, which has led to Dr Bashford recently being awarded a Clinical Research Training Fellowship.

A common symptom of MND is the ‘rippling’ of muscle under the skin, these are known as muscle fasciculations. Continue reading

New genetic discoveries tell us more about what causes MND – Part 1

Today some exciting news about the genetics of MND was published in the scientific journal Nature Genetics. The results come in two research papers published in the same issue of the journal.

This blog post discusses the results of the first of these papers for which King’s College London based Professor Ammar Al-Chalabi was one of the leading researchers. A post on the second paper will follow later.

Here we’ve given an overview of what the researchers have found, what it means for people with MND and how the analysis was conducted. You can read a more detailed explanation of the research results from the King’s press release. Continue reading

Using surface EMG to see if fasciculations can be used as a biomarker for MND

What are fasciculations?

When motor neurones in the spinal cord become damaged this makes them electrically unstable, meaning they spontaneously discharge electrical impulses that cause small groups of muscles to contract. These contractions, known as fasciculations, are a common symptom of MND. Research suggests that they might be a good marker of motor neurone health.

Tracking fasciculations with surface EMG

Prof Chris Shaw

Prof Chris Shaw

Led by researchers Prof Chris Shaw and Prof Kerry Mills, Dr James Bashford is using technology called surface EMG to collect data on the site and frequency of fasciculations in different muscles in people with MND. Fasciculations in people with MND are different to benign fasciculations, which can occur in people without the disease and are generally harmless. James and the team hope to show that fasciculations in those with MND have a unique ‘fingerprint’ which can be accurately identified and tracked.

Data collected will be compared to other information currently used to track the progression of MND. James and the team hope surface EMG might provide a more sensitive way of measuring disease progression than previously used methods. This one year feasibility study is being carried out at King’s College London at a cost of £95,000 (our reference: 932-794). Continue reading

Using DNA Bank samples to create iPSC models of MND

Induced pluripotent stem cell (iPSC) technology has enabled researchers to create and study living human motor neurones in the lab, derived originally from patient skin cells.

DNABankLogoThis project (our reference 80-970-797) is a collaboration between the labs of Professors Chris Shaw and Jack Price at King’s College in London and Siddharthan Chandran in Edinburgh. It aims to use the already collected white blood cell samples within the UK MND DNA Bank to create a larger number of new iPSC models of MND. Ultimately creating an MND iPSC cell bank, these models will enable researchers to better understand the disease and screen potential new drugs. Continue reading

Investigating C9orf72 and TDP-43 proteins in a fruitfly model of MND

Background to C9orf72 toxicity

We know that damage to C9orf72 (both the gene and the protein it makes) is a crucial step in why some people get MND and why some people get frontotemporal dementia. There are three possible reasons why C9orf72 is toxic. 1) the way the gene is damaged alters how it normally works. 2) the formation of clumps of RNA – a by-product of the damage and not normally seen in cells, and 3) the formation of very short, new and unwanted proteins called ‘dipeptide repeats’ or ‘DPRs’, again these are not normally seen..

There’s evidence of all three types of toxicity within the motor neurone, but we don’t know how they work together or if one is more toxic than another. We also know that the protein TDP-43 forms clumps in motor neurones affected by the C9orf72 gene. Continue reading

The MND Register of England, Wales and Northern Ireland

What is the MND Register?

The MND Register is a major five year project that aims to collect and store information about every person living with MND in England, Wales and Northern Ireland. It is led by world-class MND researchers Prof Ammar Al-Chalabi and Prof Kevin Talbot, at a cost of £400,500 (our grant reference: 926-794).

Why is it important?

MND is believed to affect 5,000 people in the UK at any one time, however the true figure is not known as there is currently no way of recording this information. The register aims to provide us with the true number of people living with MND in the UK.

The information collected will answer questions about how many people have MND in different areas, how the condition progresses, and how the disease can affect people. The register will connect people with MND to researchers, including those conducting clinical trials, and will provide valuable information to guide the future development of care services.

Print

How will information be collected and used?

The register will be advertised nationally to all people with MND and related healthcare professionals. People with MND will be provided with detailed information about the register, and after some time for consideration, they can agree to take part. Their information will be recorded onto a secure database, either by a healthcare professional, or by the person with MND themselves through a register website (this will then be checked by a healthcare professional). Continue reading

Understanding and preventing the protein build-up that can cause nerve cells to die

Prior research has already shown that build-up of the protein TDP-43 is found in the majority of cases of MND (irrespective of whether it was caused by an inherited genetic mistake). In healthy nerve cells, TDP-43 is normally found in the cell nucleus (the management centre of the cell). But when we look at nerve cells from people with MND, we see that the TDP-43 has left the nucleus and moved to the main body of the cell and clumped together. We do not know why this happens, or how it leads to cell damage in MND.

In nerve cells, old proteins are ‘tagged’ for breaking down and disposal (or recycling). We have an idea that TDP-43 may impact on this process.

To investigate how TDP-43 causes motor neurones to die, Dr Jacqueline Mitchell and her team at King’s College, London have created several new mouse models to investigate how TDP-43 causes motor neurones to die in MND (our grant reference: 828-791). Continue reading

Professor Ammar Al-Chalabi wins prestigious prize

Huge congratulations to Professor Ammar Al-Chalabi for winning the prestigious Sheila Essey Award at the American Academy of Neurology (AAN) research conference taking place in Vancouver, Canada.

Professor Al-Chalabi is an MND Association funded researcher and Professor of Neurology and Complex Disease Genetics at King’s College London. He is also the Director of our MND Care and Research Centre at King’s.

The Sheila Essey Award is jointly given by the AAN and the ALS Association in the USA, and recognises an individual who has made significant research contributions in the search for the cause, prevention of, and cure for amyotrophic lateral sclerosis (ALS, a type of MND).

Prof Al-Chalabi is receiving the award for his role in helping us learn more about the complex causes of MND, including the role of genetics in the non-familial form of MND.

“It is a wonderful acknowledgement of the work the present and past members of my team have done in ALS/MND research,” Prof Al-Chalabi said. Continue reading

Looking for MND genes: Project MinE update

Project MinE is an international genetics project that is analysing DNA from people with MND in detail.

For the majority of people with MND, the disease appears ‘sporadically’ for no apparent reason. For a small number of people, approximately 5-10% of those with MND there is an inherited link, in other words the disease runs in their families.

We know a lot about the genes that are damaged in the rare inherited forms of MND. We also know that very subtle genetic factors, together with environmental and lifestyle factors contribute to why the majority of people develop the disease. These subtle genetic factors are very hard to find.

The goal of Project MinE is to find the other genes that cause inherited MND and help us find out more about these subtle genetic risk factors.

mine

Project MinE was born when Dutch entrepreneur Bernard Muller challenged his neurologist to do something with all the DNA samples in his freezer – samples being stored there for future analysis. ‘Why can’t those samples be analysed now?’ was his question. That was two years ago! Continue reading