11th Lady Edith Wolfson Clinical Fellowship awarded

We are delighted to announce that Dr Arpan Mehta has been appointed as our latest Lady Edith Wolfson Fellow, jointly funded by the MND Association and Medical Research Council.  This clinical research training fellowship will help to launch his career as an aspiring academic neurologist, providing comprehensive training in cellular, molecular and bioinformatics technologies in a world-class environment. Continue reading

New fellowship to investigate muscle fasciculations

During Awareness month in June we reported on the work of Dr James Bashford at King’s College London, exploring new ways of measuring muscle fasciculations in people with MND. The results from the one year pilot study have shown a lot of promise, which has led to Dr Bashford recently being awarded a Clinical Research Training Fellowship.

A common symptom of MND is the ‘rippling’ of muscle under the skin, these are known as muscle fasciculations. Continue reading

Motor neurone signalling and the effects of RNA in MND

Dr Pietro Fratta completed his first MRC-MND Association Clinical Research Training Fellowship in 2014. Last year he was awarded a new £1.16 million Clinician Scientist Fellowship to continue his research at University College London, studying the earliest physical changes that affect motor neurons in MND (our reference 946-795). Our contribution to this four year research fellowship is £280,000.

Pietro Fratta

Dr Pietro Fratta, University College London

As his first Fellowship progressed, Dr Fratta became more interested in the field of RNA biology, where he is rapidly establishing himself as an expert. His latest project aims to see whether RNA plays a pivotal role in the earliest signs of cellular damage that occur in MND.

RNA is the cell’s copy of our genetic material known as DNA; Dr Fratta is hoping to establish if the transport of RNA molecules along the nerve fibres is impaired and if so, whether there are particular versions of RNA that are particularly important for motor neurone health and survival.

Several lab studies have shown that the process of transporting things up and down the motor neurones is impaired long before the physical signs of damage are seen. His research will seek to find out what RNA molecules are present in both the cell body of the motor neuron and the nerve fibres. Continue reading

Developing the Biomarkers in Oxford Project

Biomarkers in Oxford (BioMOx) is a research project with the aim of identifying a diagnostic biomarker for MND, which could be used to track the progression of this condition.

What are biomarkers?

The aim is to identify biomarkers, or ‘biological fingerprints’ for MND. This could be through testing blood and spinal fluid (CSF) samples from people with MND, or using MRI scans and other imaging techniques to look at changes in the brain.

By understanding the very earliest changes detected in these samples at the start of MND (the biomarker), it is hoped that they could be used to work towards disease prevention and to develop more targeted therapy for those already affected by MND.

For example, including a biomarker element in future clinical trials will help us learn more about the disease and identify participants most likely to benefit from the drug being tested.

Being able to track the progression of the disease could also help with effective care-planning for people with MND. Continue reading

Flying towards an understanding of TDP-43

If you looked at the motor neurones of people with MND down the microscope you would see clumps of a protein called TDP-43. Researchers around the world are working to find why these clumps form and how they are linked to MND.

Dr Jemeen Sreedharan has been looking at the effects of TDP-43 in fruit flies. Initially he investigated how TDP-43 caused its effects, later moving on to find ways to reduce or prevent the damage. He spent the first two years of his MRC and MND Association-funded Fellowship (our reference: 943-795) working at the University of Massachusetts, Boston USA returning last autumn to perform the next stages of his research at the Babraham Institute near Cambridge, UK. Continue reading

The role of the protein TDP-43 in MND due to C9orf72 mutations

Mistakes in the C9orf72 gene are the most common cause of inherited MND, and can be linked to about 40% of all cases. Now that we know that damage to the C9orf72 gene causes MND the next step is to understand how this mutation causes the motor neurones to die. In particular Dr Jakub Scaber is looking at how another cause of MND – the formation of clumps of protein called TDP-43 are linked to changes to C9orf72. (You can read more about TDP-43 in the post about Dr Mitchell’s project yesterday).

Jakub Scaber

Dr Jakub Scaber, University of Oxford

Dr Jakub Scaber is a MND Association/ MRC Lady Edith Wolfson Clinical Research Fellow at the University of Oxford, he is studying how mistakes in the C9orf72 gene and TDP-43 protein cause MND (our grant reference: 945-795).

These fellowships are jointly funded by the Association and the Medical Research Council (MRC). They support clinicians (practising doctors) wishing to pursue scientific research and aim to strengthen the links between laboratory and clinic. Our financial commitment to these fellowships varies between £86,000 and £280,000 for up to five years. For this project the total cost of the grant is £173,697 and the MND Association contributes £86,848 with the MRC paying the rest of the money. Continue reading

New fellowship awarded to further our understanding of RNA in MND

Dr Pietro Fratta (University College London) received his initial Training Fellowship through the MND Association/ Medical Research Council (MRC) Lady Edith Wolfson Programme in 2010. Starting on 1 February 2015, Dr Fratta was awarded a Clinician Scientist Fellowship to continue his research into MND.

LEWFP_Logo_BLACK

Totalling £1.16 million, of which the Association has committed to contribute £280,000, this new fellowship will allow Dr Fratta to find out what RNA molecules are present in both the cell body of the motor neuron, and the nerve fibres. Continue reading

On the seventh day of Christmas MND research gave to me: Seven research strategy themes

“On the seventh day of Christmas MND research gives to you… our SEVEN research strategy themes”

It’s New Year’s eve, a time to look back and celebrate on 2014 and our MND research achievements. It’s also a time to look to the future; in 2015 we will be funding new MND research in line with our research strategy.

Our 2010-2015 research strategy focuses on seven key themes.

causes1) Identifying the causes of MND

The exact cause of the majority of cases of MND is still unknown. Therefore identifying the causes is our first step in understanding MND and developing future treatments.

In 2014 we identified two new inherited MND genes and also announced funding for the UK Whole Genome Sequencing project to better identify the rarer genetic factors involved in causing the disease. Read more.

models2) Create and validate new models

Once we identify a genetic cause of MND, we need to find out how this gene causes MND. Animal and cellular models help us to find out how the gene affects the motor neurones and how this causes disease in a complex animal system. Continue reading

Human Motor Neurones

Dr Jakub Scaber is a Medical Research Council (MRC)/  MND Association Lady Edith Wolfson Clinical Research Fellow who works in Professor Kevin Talbot’s Laboratory at the Oxford University. Like Prof Chandran’s research, Dr Scaber’s fellowship is also investigating stem-cell derived motor neurones, here he blogs about his research.

jakub mn image

This is an image of motor neurons.

But not just any motor neurons – these are motor neurons that have been derived from skin cells of one of our patients who was a carrier of the most common mutation in the rare inherited form of MND (5-10% of total MND cases) – a mutation in the gene C9orf72. Continue reading

The UK MND DNA Bank 6 months on…

It’s been six months since the UK MND DNA Bank (DNA Bank) opened its doors to researchers around the world, so what has been happening to all those samples? Dr Lucy Smith, Research Information Administrator at the MND Association, explains:

Freezer at BioBanking Solutions

Freezer at BioBanking Solutions

The DNA Bank is the first UK biobank dedicated to MND and has 3000 samples under its roof. Over an 8 year period, blood samples were collected from people living with MND and their family members, together with unrelated controls. The DNA was extracted, and the entire collection is now stored and managed in partnership with BioBanking Solutions (BBS) at the University of Manchester. Important clinical information, such as gender and the age of onset of the people who gave the sample is also stored within the collection.

Alongside DNA, the DNA Bank also stores some cells lines at the European Collection of Cell Cultures (ECACC), Public Health England. The cell lines were made as a guarantee that the DNA supply wouldn’t run out, however the cell lines have become hugely important over recent years and are now a valuable resource themselves.

So, how have the samples been used? Continue reading