New fellowship awarded to further our understanding of RNA in MND

Dr Pietro Fratta (University College London) received his initial Training Fellowship through the MND Association/ Medical Research Council (MRC) Lady Edith Wolfson Programme in 2010. Starting on 1 February 2015, Dr Fratta was awarded a Clinician Scientist Fellowship to continue his research into MND.

LEWFP_Logo_BLACK

Totalling £1.16 million, of which the Association has committed to contribute £280,000, this new fellowship will allow Dr Fratta to find out what RNA molecules are present in both the cell body of the motor neuron, and the nerve fibres. Continue reading

Toxic proteins may cause motor neurones to die in C9orf72 MND

MND Association and Alzheimer’s Research UK-funded researchers from University College London have identified that toxic proteins may cause motor neurones to die in C9orf72 MND and frontotemporal dementia. Published open access in the journal Science on Thursday 7 August, this research explains more about one of the most common forms of inherited MND.

The brain of a transgenic fruit fly Drosophila melanogaster, used to study neurodegenerative diseases, with cell nuclei (stained purple) and glial cells (green). Image courtesy of Teresa Niccoli, UCL Institute of Ageing, London, UK.

Continue reading

Using induced pluripotent stem cells to further our understanding of MND

Dr Jakub Scaber from the University of Oxford is our newest Medical Research Council (MRC)/ MND Association Lady Edith Wolfson Clinical Research Fellow. He is investigating how the newly identified C9orf72 gene causes MND in some individuals using induced pluripotent stem (iPS) cell technology.

Courtesy of Prof Chandran's laboratory, University of Edinburgh

Courtesy of Prof Chandran’s laboratory, University of Edinburgh

Researchers funded by the Association were amongst the first to create human motor neurones from donor skin cells, mimicking the signs of MND. Today, the Association is committed to funding six research projects using iPS cell technology to further our understanding of MND. This includes the recently awarded fellowship to Dr Scaber. Read more about these projects here.

Dr Scaber will be using iPS cell technology to take skin cells from someone living with the rare inherited form of MND (5 – 10% total MND cases) caused by the C9orf72 mutation. Similar to Prof Chandran’s research at the University of Edinburgh, he will then make these cells ‘forget’ what they are and turn them into motor neurones. By studying these cells in detail he aims to find out how this mutation causes MND and whether or not gene therapy can be used as a potential treatment.

Continue reading

Matrin 3 gene identified

Following on from our ’year of hope’ appeal last month an international team of researchers, including two funded by the MND Association, have identified mutations in the Matrin 3 (MATR3) gene as a cause of the rare inherited form of MND.

Medical Research Council (MRC)/ MND Association Lady Edith Wolfson Clinical Research Fellow Dr Pietro Fratta was involved in the research, which was published on 30 March 2014 in the prestigious journal Nature Neuroscience.

Inherited MND is a rare form of MND (5-10% of total MND cases) and the MATR3 gene is the latest to be identified. This rare form of MND is characterised by a family history of MND.

New gene, new gene

When a new gene is first identified this creates a great deal of ‘buzz’ amongst the MND research community, often generating more questions than answers:

  • How common is this inherited MND gene?
  • How does this gene cause MND?

This is the starting point for MATR3. Unfortunately, we just don’t know the answers to these questions at the moment. Hopefully MND researchers will now use the discovery of MATR3 to find the answers to these questions and further our understanding of this gene.

Continue reading

Progress in the MND Oxford BioMOx project

MND Association funded researcher Dr Martin Turner at University of Oxford has identified a pattern of degeneration in the brains of people with MND that is linked to the level of disability.

This finding brings us closer to identifying a biomarker that can be used to speed up the diagnosis of MND, which can be delayed on average by a year since first symptoms.

This is the third finding to be announced since Dr Turner was awarded with the MRC/MND Association’s Lady Edith Wolfson Clinical Research Fellowship in 2008.

You can read more about this exciting finding on our website:

Progress in the Oxford BioMOx project | 2013 | MND Association.

Reference: Stagg CJ, Knight S, Talbot K, Jenkinson M, Maudsley AA, Turner MR, Whole-brain magnetic resonance spectroscopic imaging measures are related to disability in ALS. Neurology 2013; DOI 10.1212/WNL.0b013e318281ccec