Toxic proteins may cause motor neurones to die in C9orf72 MND

MND Association and Alzheimer’s Research UK-funded researchers from University College London have identified that toxic proteins may cause motor neurones to die in C9orf72 MND and frontotemporal dementia. Published open access in the journal Science on Thursday 7 August, this research explains more about one of the most common forms of inherited MND.

The brain of a transgenic fruit fly Drosophila melanogaster, used to study neurodegenerative diseases, with cell nuclei (stained purple) and glial cells (green). Image courtesy of Teresa Niccoli, UCL Institute of Ageing, London, UK.

Continue reading

The MND Researchers Bake off Champion!

As well as helping out with our ‘blog a day’ during MND Awareness Month, we also asked our researchers to get involved in ‘baking’ to become our first ‘MND Researchers Bake off Champion’. We received some great science-themed cakes, from zebrafish biscuits to a Nuclear Magnetic Resonance(NMR) machine cake!

Our Director of Research, Dr Brain Dickie said: “It was really tough to judge, they were all great entries! (might need to taste next year though…!). Of the seven entrants there was one that I think wins by a short head, scoring on appearance, originality and relevance to MND research, with an extra mark for sheer wackiness – the ribosome translating a C9orf72 repeat expansion cake!”

The winning cake was by Jenn Dodd, a PhD student at the Sheffield Institute for Translational Neuroscience (SITraN)! Here Jenn describes her cake and how it feels to be the MND Researchers Bake off Champion!

Jenn Dodd's winning ribosome translating C9orf72 cake!

Jenn Dodd’s winning ribosome translating C9orf72 cake!

The winner’s speech:

I decided to bake the cake, as at SITraN we have a weekly cake club and it was my turn to bake in June. I thought entering the competition would be a good way to get involved in MND awareness month and thought it would make cake club a bit different!

Small structural units called cells make up the human body. They convert food and oxygen into energy to produce chemically reactive machines and building blocks called proteins. There are thousands of different proteins made and so special templates called RNA are sent to a protein-making factory in cells called the ribosome. The ribosome makes proteins from the RNA templates in a process called translation (Read more about how cells make proteins here).

The cake shows a ribosome (yellow) translating RNA (the stripey sweets) to make a protein (the flying saucer chains). The protein that is being made is C9ORF72, a protein with an unknown function that is involved in some cases of MND.

I’d like to say thank you and I am really please to have won the bake off with my cake experiment!

Unravelling TDP43 toxicity

Background to TDP43

A characteristic sign of motor neurones affected by motor neurone disease is the clumps of protein visible down a microscope. Although these proteins have been observed in motor neurones from people affected by MND since the earliest descriptions in the 1870s, a key discovery was made when the identity of a protein, common to all types of MND, was unveiled as ‘TDP43’ in 2008.

Two years later a second protein called FUS was also been found to be common to all types of MND. More information on this aspect of MND can be found in an article on our research blog.

One of the exciting things about these two discoveries was that they were both linked to a set of biological pathways, known as RNA processing. The was the first major clue that RNA processing was involved in MND. When the discovery of genetic defect in the C9orf72 gene came along in 2011, that made a third MND-causing gene defect that linked to RNA processing.

The first session of the 24th International Symposium on ALS/MND after lunch yesterday was dedicated to the topic of RNA processing and dysregulation. Several of the talks presented work on understanding the role of TDP43 in MND.

Continue reading